

CLINICAL EPIDEMIOLOGY OF AGING & COMORBIDITY WITH HIV INFECTION: A GLOBAL PERSPECTIVE

Mark Siedner

Harvard Medical School/Massachusetts General Hospital Boston, MA USA

Disclosures: None

Talk Summary

- What 30 years of research has taught us about the epidemiology of co-morbidities among people with HIV
- Could much of what we believe about the epidemiology of comorbidities among people with HIV be wrong?
 - Sub-Saharan Africa perspective
 - Global North perspective through a social science lens
- Summary and research priorities

HIV and Health in the Pre-ART Era

Combination ART & the Sea Change

The New England Journal of Medicine

© Copyright, 1996, by the Massachusetts Medical Society

VOLUME 335

OCTOBER 10, 1996

NUMBER 15

A TRIAL COMPARING NUCLEOSIDE MONOTHERAPY WITH COMBINATION THERAPY IN HIV-INFECTED ADULTS WITH CD4 CELL COUNTS FROM 200 TO 500 PER CUBIC MILLIMETER

Scott M. Hammer, M.D., David A. Katzenstein, M.D., Michael D. Hughes, Ph.D., Holly Gundacker, M.S., Robert T. Schooley, M.D., Richard H. Haubrich, M.D., W. Keith Henry, M.D., Michael M. Lederman, M.D., John P. Phair, M.D., Manette Niu, M.D., Martin S. Hirsch, M.D., and Thomas C. Merigan, M.D., for the AIDS Clinical Trials Group Study 175 Study Team*

Hammer et al, NEJM, 1996

HIV and Health in the ART Era

Longevity, Health and Wellbeing

HIV and Life Expectancy in ART Era

Marcus et al, JAIDS, 2012

HIV Infection and Myocardial Infarction

Triant et al, J Clin Endo, 2007 Chow et al, AIDS 2012 Currier et al, JAIDS, 2003 Frieberg et al, Ann Int Med, 2013 Althoff et al, Clin Inf Dis, 2015

HIV Infection and Cancer

Franzetti et al, Current HIV Research, 2019

HIV and Frailty

Althoff et al, J Geriatrics, 2013

HIV and Reduced Physical Function

Greene et al, AIDS, 2014

ART-related toxicity

Friis-Møller et al, NEJM, 2007

ART-related toxicity

Monforte et al, *AIDS*, 2013 Lang et al, *JAMA Int Med*, 2010

The disease or its treatment?

Outcome	Relative Risk for Treatment Interruption*	P-value	Total Events
Death	1.8 (1.2-2.9)	0.007	55

*Relative risk comparing those with ART treatment interruption versus those who remain on therapy

SMART Study Group, NEJM, 2006

The disease or its treatment?

Outcome	Relative Risk for P-value Treatment Interruption*		Total Events
Death	1.8 (1.2-2.9)	0.007	55
Serious OI	6.6 (1.5 – 29)	0.01	13

*Relative risk comparing those with ART treatment interruption versus those who remain on therapy

SMART Study Group, NEJM, 2006

The disease or its treatment?

Outcome	Relative Risk for Treatment Interruption*	P-value	Total Events
Death	1.8 (1.2-2.9)	0.007	55
Serious OI	6.6 (1.5 – 29)	0.01	13
Major CV Event	1.7 (1.1-2.5)	0.009	65

*Relative risk comparing those with ART treatment interruption versus those who remain on therapy

SMART Study Group, NEJM, 2006

Confounded by Traditional Risk Factors?

Confounded by CVD Risk Factors?

Paisable et al, JAIDS, 2015

Confounding by CVD Risk Factors?

Inflammation as a Casual Mediator

Months from Randomization

Months from Randomization

Duprez et al, Plos One, 2012

Inflammation as a Casual Mediator

Nordell et al, J Am Heart Assoc, 2014

Timing of ART Initiation and Chronic Inflammation

Sereti et al, Clin Infect Dis, 2017

Timing of ART Initiation and CM Risk

Hunt, Lee, and Siedner, J Infect Dis, 2016

Neurocognition and Early ART Initiation

Wright et al, AIDS, 2019

Frailty and HIV by History of AIDS

Althoff et al, J Geriatrics, 2013

Physical Function and HIV by Disease Status

	No. (%) with	Unadjusted	Adjusted*	
	SPPB ≤10	OB (95% CI)	OB (95% CI)	
	4001 (32.6% of all study visits)		0(00.7.0.)	
HIV-uninfected	2701 (31.6)	Ref	Ref	-
HIV-infected	1300 (35.0)	1.30 (1.12–1.51)	1.30 (1.12–1.52)	- · · · · · · · · · · · · · · · · · · ·

Greene et al, AIDS, 2014

Confounding by ART Use & Timing?

Halftime Summary

 PWH in Global North with access to ART have persistent, albeit narrowing, gap in life expectancy

• Innumerable conditions are increased with HIV infection (partial list)

- Atherosclerosis/CVD
- Chronic lung disease
- Cancer
- Geriatric syndromes: frailty, reduced physical functioning, cognitive decline

Increased inflammation among PWH predicts poor health and outcomes

• Early treatment initiation mitigates risk of some, but not all, conditions

Interventions against causal risk factors

- Early treatment, early treatment, early treatment
- Anti-inflammatory therapies?

On causal effects and mis-specification

*Adjusted for: age, BMI, history of DM, history HTN, cholesterol, age at menopause, smoking, family history

Goldstein et al, AIM, 2000 Grady et al, JAMA, 2002

Is the effect of HIV on chronic co-morbidities causal?

Sir Bradford-Hill Criteria

- Strength of association
- Consistency?
- Specificity
- Temporality

- Biologic plausibility
- Dose-response
- Coherence
- Experimental proof

- Consistency
 - The case of sub-Saharan Africa

HIV, Gender and Inflammation in Uganda

Siedner et al, J Infect Dis, 2018

A global perspective: sub-Saharan Africa

Siedner et al, J Am Heart Assoc, 2020

HIV and Stroke Risk

Characteristic	Adjusted Odds Ratio*	P-value	Population Attributable Fraction
Hypertension	5.01 (3.02 - 8.29)	<0.001	46%
Diabetes	3.41 (1.45 - 8.01)	0.005	3%
Current Smoker	2.36 (1.34 - 4.13)	0.003	6%
HIV Infection	3.28 (2.05 – 5.25)	<0.001	15%

Benjamin et al, *Neurology*, 2016

HIV and Stroke Risk

Characteristic	Adjusted Odds Ratio*	P-value	Population Attributable Fraction
Hypertension	5.01 (3.02 – 8.29)	<0.001	46%
Diabetes	3.41 (1.45 - 8.01)	0.005	3%
Current Smoker	2.36 (1.34 - 4.13)		6%
HIV Infection	3.28 (2.05 - 5.25)	<0.001	15%
Untreated	4.48 (2.44 – 8.24)	<0.001	
ART >6 months	1.49 (0.72 – 3.07)	0.23	

Benjamin et al, *Neurology*, 2016

HIV and Ideal CVD Risk Factors in Uganda

Feinstein et al, AIDS Res Human Retro, 2017

HIV Care and Access to Primary Care

Mitton et al, AIDS Care, 2018

Umkhanyakude District (SA) HIV and Fatal Stroke Incidence

Siedner et al, 2018 IAS Conference

Balance of health determinants for PWH in SSA

ART Toxicity Late Treatment Initiation Chronic Inflammation

Social Support Access to Primary Care

Could we be mis-estimating the *causal* effect of HIV on co-morbidities in the US?

Social determinants of health and risk of HIV

- Compared to other races, black MSM in the US and UK:
 - *More* likely to practice HIV prevention behaviors (OR 1.4, 1.2-1.6)
 - Less likely to have a history of substance abuse (OR 0.5, 0.4-0.8)
 - More likely to have HIV in the US (3.0, 2.1-4.4) and UK (1.9, 1.6-2.2)
 - *More* likely of having at least one structural barrier to care (unemployment, low income, previous incarceration, lower educational attainment), OR>2.0
 - Less likely to to initiate ART (22% vs 60%)

Millett et al, Lancet, 2012

Social determinants of health and risk of HIV

		HIV diagnoses No. (rate)			Absolute rate
Year	Black	Hispanic	White	Overall rate	difference [†]
2010	6,310 (38.7)	1,469 (7.8)	1,540 (1.8)	7.7	36.9
2011	5,856 (35.5)	1,351 (7.0)	1,506 (1.7)	6.9	33.8
2012	5,580 (33.4)	1,229 (6.2)	1,426 (1.6)	6.6	31.8
2013	5,227 (30.9)	1,279 (6.3)	1,418 (1.6)	6.3	29.3
2014	5,128 (30.0)	1,350 (6.5)	1,483 (1.7)	6.4	28.3
* Per 100,0	00 population.				

HIV Incidence among women in the US by Race

 Black MSM in the US 80% more likely to have concurrent sexual partnerships compared to white women

> McCree et al, *MMWR*, 2017 Adimora, *Am J Pub Health*, 2011

Race, HIV, Infection and Years of Life Lost

Pellegrino et al, ID Week Abstract 53, 2021

HIV Prevalence and Poverty in the US

NCD Death Rates and Poverty in the US

Cancer Death Rates among Adults >50 (2015-2019)

Heart Disease Death Rates among Adults >35 (2017-2019)

https://www.cdc.gov/dhdsp/maps/national_maps/hd_all.htm https://statecancerprofiles.cancer.gov/

CVD Prevalence and Poverty in the US

Abdallah, Yu, and Galea, JAMA Net Open, 2020

Summary

- Chronic inflammation, despite ART use, predisposes PWH to increased risk of multiple co-morbidities
 - Early ART mitigates some, but not all, risk
 - Risk of accelerated aging, liver and lung disease, and cancer persist
- Early data from sub-Saharan Africa seems to support a role for access to primary care as a mitigating factor against co-morbidity risk
- Social determinants of health are poorly measured and absent from much of the literature on co-morbidity risk in global north
 - Associated with HIV acquisition risk, HIV care delivery, HIV mortality
 - Also associated with poor outcomes for most "HIV related" co-morbidities
 - Degree of confounding unknown
 - Critical to determine its role in explaining HIV related co-morbidities to enable effective interventions to improve health

Research priorities for epi of HIV and aging

- Determine role of anti-inflammatories in prevention of HIV-related chronic co-morbidities
- Better elucidate contributions of social determinants of health in determining HIV-related co-morbidity risk
- Evaluation of interventions that promote health equity, increase healthcare access, and improve quality of care delivery on HIV risk, health outcomes and quality of life